Cauchy Problem in the Non-Classical Treatment for One Pseudoparabolic Equation
نویسندگان
چکیده
منابع مشابه
Nvestigation of a Boundary Layer Problem for Perturbed Cauchy-Riemann Equation with Non-local Boundary Condition
Boundary layer problems (Singular perturbation problems) more have been applied for ordinary differential equations. While this theory for partial differential equations have many applications in several fields of physics and engineering. Because of complexity of limit and boundary behavior of the solutions of partial differential equations these problems considered less than ordinary case. In ...
متن کاملon a characteristic problem for a third order pseudoparabolic equation
in this paper, we investigate the goursat problem in the class c21(d)cn0 (d p) c00 (d q)for a third order pseudoparabolic equation. some results are given concerning the existence and uniquenessfor the solution of the suggested problem.
متن کاملThe Cauchy problem for the semilinear quintic Schrödinger equation in one dimension , the defocusing case
We show that the Cauchy problem for the quintic NLS on R is globally well-posed in Hs for 4/9 < s ≤ 1/2. Since we work below the energy space we can not immediately use the energy.Instead we use the “I-method” introduced by J.Colliander,M.Keel,G.Staffilani, H.Takaoka,T.Tao.This method allows us to define a modification of the energy functional that is “almost conserved” and thus can be used to ...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Universal Journal of Computational Mathematics
سال: 2014
ISSN: 2332-3035,2332-3043
DOI: 10.13189/ujcmj.2014.020101